

Concordance Analysis Between Microsatellite Instability Status and Tumor Mutational Burden in Colorectal Cancer Patients: A Nested Case-Control Study.

Natalia Rodon¹, Yessica No Garbarino¹, Olga Diaz¹ & Xavier Puig^{1,2,3}. ¹BIOPAT. Biopatologia Molecular SL, Grup Assistència. Barcelona. Spain; ²Histopat Laboratoris, S.L. Barcelona, Spain; ³Hospital de Barcelona, SCIAS, Grup Assistència. Spain. The authors of this abstract have indicated that they have no conflicts of interest that relate to the content of this abstract.

BACKGROUND

Mismatch repair (MMR) deficiency and microsatellite instability (MSI) are approved predictive biomarkers of PD1/PD-L1 therapy in colorectal cancer (CRC) patients. Tumor Mutational Burden (TMB) quantifies the number of somatic mutations in tumoral DNA and is reported as number of mutations per DNA Megabase (mut/Mb). TMB is being investigated as a novel predictive biomarker for immune checkpoint inhibitors. In this study we explore the feasibility and potential utility of calculating TMB with a nextgeneration sequencing (NGS) based panel and its correlation with MMR and MSI.

DESIGN

We designed a nested case-control study in our cohort of 442 CRC patients with complete morpho-molecular characterization from 2009 till July 2019. All patients had previous MSI assessment with a 5 microsatellites panel kit (MSI Analysis System, Promega) and immunohistochemical analysis of MMR proteins (MLH1, MSH2, MSH6 and PMS2) (Figure 1). Cases were defined as CRC patients with high-MSI. Controls (MSS, 1:1) were selected among CRC patients without high-MSI. Genomic DNA was extracted from paired FFPE normal and malignant tissue sections (RecoverAll Kit for FFPE, ThermoFisher). TMB was assessed with a targeted NGS assay detecting somatic mutations and Indels from 409 genes, spanning 1.7 Mb of genomic space (Oncomine TMB. ThermoFisher). High-TMB was defined as \geq 10 mut/Mb. Analysis was performed using SSPS v20.

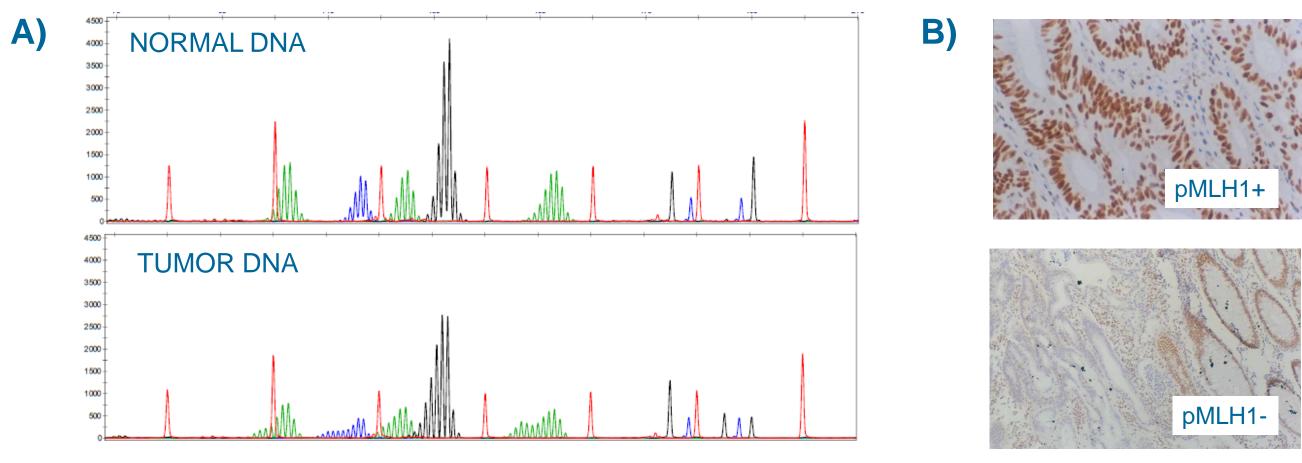
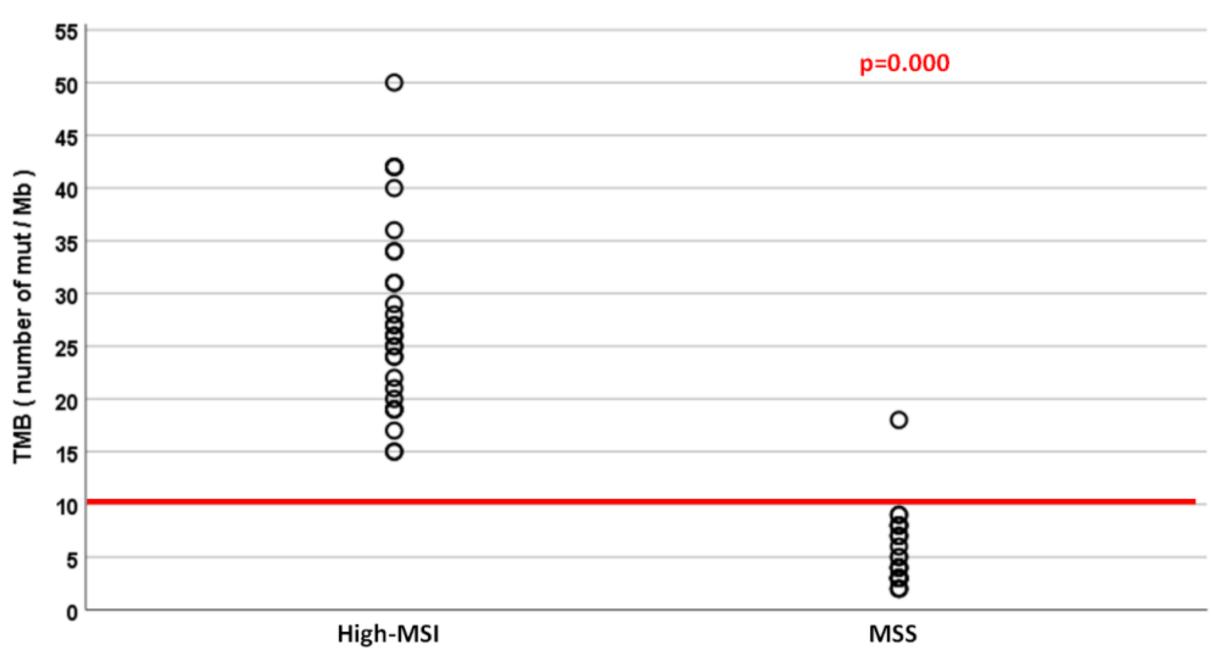



Figure 1. A) MSI assessment. B) MLH1 immunohistochemical analysis.

RESULTS

The 9.7% of CRC patients from the total series showed high-MSI. The concordance rate between MSI status and MMR IHC was 100% and 87.5% in MSS and high-MSI patients, respectively. Sixty CRC patients were included: 30 high-MSI and 30 MSS without differences regarding age or gender (68% females, median age 68 years). The concordance rate between MSI status and MMR expression was 97.7%. All but one TMB studies were informative. Median TMB was higher in the high-MSI group compared to the MSS group [28.1 (15.2-50.2) vs 5.3 (1.7-18.5) Mut/Mb respectively, p=0.000]. A TMB threshold \geq 10 mut/Mb was associated with a high-MSI status in 98.3%. One (3.4%) MSS tumor with no MMR deficiency showed an unexpected high-TMB (18.48mut/Mb) (Figure 2).

CONCLUSIONS

- The concordance rate between MSI status and TMB in CRC is excellent.
- A TMB threshold ≥ 10mut/Mb accurately identifies CRC patients with high-MSI.
- TMB is able to identify a small proportion of MSS patients suitable to respond to immunotherapy not previously detected by MSI or MMR studies.

USCAP 2020. Los Angeles, California.